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Modeling Network Diffusion:
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Data from J. J. Potterat, L. Phillips-Plummer, S. Q. Muth, R. B. Rothenberg, D. E. Woodhouse, T. S. Maldonado-Long, H. P.
Zimmerman, and J. B. Muth, “Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs,”

Sexually Transmitted Infections, 78 (2002), pp. i159-1163.
http://www-personal.umich.edu/~mejn/networks/



http://www.sojamo.de/iv/index.php?n=10&ci=003-01
http://www.sojamo.de/iv/index.php?n=10&ci=003-01
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http://blog.stephenwolfram.com/2013/04/data-science-of-the-facebook-world/

2 I I 1 1 2 3 L I A I I I i

3000 4000 2000



http://jakehofman.com/talks/hadoopworld_20091002.pdf
http://jakehofman.com/talks/hadoopworld_20091002.pdf

Twitter Degree Distribution
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Twitter Cascades

74 million chains Initiated by more than 1.6 million
users during two months in 2009

38% of URLS
PN l Were never
] J ) | N '*’,J~: reposted

Bakshy et al. 2011



YouTube Views
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Threshold Model
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facebook 1= & F'¥ P Lamberson  Home  ~

“Once the exclusive online stomping grounds of college
students, social networking site Facebook.com is
throwing open the doors to rest of the world.

The growth move is fraught with risk for the company,
whose more than 9.3 million registered users are

Intensely attached to the site because it [ets them o—o—o0—0%
connect to a select group of peers. ... the company 2004 2006 2008 2010
risks being viewed as a second-rate version of

MySpace, the famously open social network that now

recelves more than 46 million visitors per month.”
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Forbes.com 9/11/06

http://www.forbes.com/2006/09/11/facebook-opens-up-cx_rr 0911facebook.html



http://www.forbes.com/2006/09/11/facebook-opens-up-cx_rr_0911facebook.html
http://www.forbes.com/2006/09/11/facebook-opens-up-cx_rr_0911facebook.html

